Menu English Ukrainian russian Home

Free technical library for hobbyists and professionals Free technical library


ENCYCLOPEDIA OF RADIO ELECTRONICS AND ELECTRICAL ENGINEERING
Free library / Schemes of radio-electronic and electrical devices

Charger for starter batteries. Encyclopedia of radio electronics and electrical engineering

Free technical library

Encyclopedia of radio electronics and electrical engineering / Automobile. Batteries, chargers

Comments on the article Comments on the article

The simplest charger for automotive and motorcycle batteries, as a rule, consists of a step-down transformer and a full-wave rectifier connected to its secondary winding [1]. A powerful rheostat is connected in series with the battery to set the required charging current. However, such a design turns out to be very cumbersome and unnecessarily energy-intensive, and other ways of regulating the charging current usually complicate it significantly.

In industrial chargers, KU202G trinistors are sometimes used to rectify the charging current and change its value. It should be noted here that the direct voltage on the included SCRs at a high charging current can reach 1,5 V. Because of this, they heat up a lot, and according to the passport, the temperature of the SCR case should not exceed + 85 ° C. In such devices, it is necessary to take measures to limit and stabilize the temperature of the charging current, which leads to their further complication and increase in cost.

The relatively simple charger described below has a wide range of charging current regulation - practically from zero to 10 A - and can be used to charge various 12 V starter batteries.

Charger for starter batteries
(click to enlarge)

The device (see diagram) is based on a triac controller published in [2], with additionally introduced low-power diode bridge VD1 - VD4 and resistors R3 and R5.

After connecting the device to the network with its positive half-cycle (plus on the upper wire according to the circuit), the capacitor C2 begins to charge through the resistor R3, the diode VD1 and the series-connected resistors R1 and R2. With a negative half-cycle of the network, this capacitor is charged through the same resistors R2 and R1, the diode VD2 and the resistor R5. In both cases, the capacitor is charged to the same voltage, only the polarity of the charge changes.

As soon as the voltage on the capacitor reaches the ignition threshold of the neon lamp HL1, it lights up and the capacitor quickly discharges through the lamp and the control electrode of the triac VS1. In this case, the triac opens. At the end of the half cycle, the triac closes. The described process is repeated in each half-cycle of the network.

It is well known, for example from [1], that the control of a thyristor by a short pulse has the disadvantage that with an inductive or high-resistance active load, the anode current of the device may not have time to reach the holding current during the control pulse. One of the measures to eliminate this drawback is the inclusion of a resistor in parallel with the load.

In the described charger, after turning on the triac VS1, its main current flows not only through the primary winding of the transformer T1, but also through one of the resistors - R3 or R5, which, depending on the polarity of the half-cycle of the mains voltage, are alternately connected in parallel to the primary winding of the transformer by diodes VD4 and VD3, respectively .

The same purpose is served by a powerful resistor R6, which is the load of the rectifier VD5, VD6. Resistor R6, moreover, generates discharge current pulses, which, according to [3], prolong battery life.

The main node of the device is the transformer T1. It can be made on the basis of the LATR-2M laboratory transformer by insulating its winding (it will be primary) with three layers of varnished cloth and winding the secondary winding, consisting of 80 turns of insulated copper wire with a cross section of at least 3 mm2, with a tap from the middle. The transformer and rectifier can also be borrowed from the power source published in [4]. In case of self-manufacturing of the transformer, you can use the calculation method described in [5]; in this case, they are set by the voltage on the secondary winding of 20 V at a current of 10 A.

Capacitors C1 and C2 - MBM or others for a voltage of at least 400 and 160 V, respectively. Resistors R1 and R2 -SP 1-1 and SPZ-45, respectively. Diodes VD1-VD4 -D226, D226B or KD105B. Neon lamp HL1 - IN-3, IN-ZA; it is highly desirable to use a lamp with electrodes of the same design and size - this will ensure the symmetry of the current pulses through the primary winding of the transformer.

Diodes KD202A can be replaced by any of this series, as well as by D242, D242A or others with an average direct tone of at least 5 A. The diode is placed on a duralumin heat sink plate with a useful surface area. dispersion not less than 120 cm2. The triac should also be mounted on a heat sink plate with about half the surface area. Resistor R6 - PEV-10; it can be replaced by five MLT-2 resistors connected in parallel with a resistance of 110 ohms.

The device is assembled in a strong box made of insulating material (plywood, textolite, etc.). Ventilation holes should be drilled in its upper wall and in the bottom. The placement of parts in the box is arbitrary. Resistor R1 ("Charging current") is mounted on the front panel, a small arrow is attached to the handle, and under it is a scale. Circuits carrying a load current must be made with a wire of the MGShV brand with a cross section of 2,5 ... 3 mm2.

When setting up the device, first set the required charging current limit (but not more than 10 A) with resistor R2. To do this, a battery of batteries is connected to the output of the device through a 10 A ammeter, strictly observing the polarity. The engine of the resistor R1 is translated into. the highest position according to the diagram, the resistor R2 - to the lowest, and turn on the device in the network. By moving the slider of the resistor R2, set the required value of the maximum charging current.

The final operation is the calibration of the scale of the resistor R1 in amperes using a reference ammeter.

During charging, the current through the battery changes, decreasing by about 20% towards the end. Therefore, before charging, the initial battery current is set slightly higher than the nominal value (by about 10%). The end of charging is sent according to the density of the electrolyte or with a voltmeter - the voltage of the disconnected battery should be in the range of 13,8 ... 14,2 V.

Instead of resistor R6, you can install an incandescent lamp for a voltage of 12 V with a power of about 10 W, placing it outside the case. It would indicate the connection of the charger to the battery and at the same time illuminate the workplace.

Literature

1. Power electronics. Reference manual, ed. V.A. Labuntsova - 1987. pp. 280, 281, 426, 427.
2. Fomin V. Triac power regulator. - Radio, 1981. No. 7, p.63.
3. Zdrok A. G. Rectifier devices for stabilizing voltage and battery charge - M .: Energoatomizdat, 1988.
4. Gvozditsky G. High power power supply. - Radio, 1992. No. 4, pp. 43-44 ..
5. Nikolaev Yu. Homemade power supply? There is nothing easier. - Radio, 1992, No. 4. With. 53,54.

Authors: N. Talanov, V. Fomin, Nizhny Novgorod, Radio 7-94; Publication: N. Bolshakov, rf.atnn.ru

See other articles Section Automobile. Batteries, chargers.

Read and write useful comments on this article.

<< Back

Latest news of science and technology, new electronics:

Artificial leather for touch emulation 15.04.2024

In a modern technology world where distance is becoming increasingly commonplace, maintaining connection and a sense of closeness is important. Recent developments in artificial skin by German scientists from Saarland University represent a new era in virtual interactions. German researchers from Saarland University have developed ultra-thin films that can transmit the sensation of touch over a distance. This cutting-edge technology provides new opportunities for virtual communication, especially for those who find themselves far from their loved ones. The ultra-thin films developed by the researchers, just 50 micrometers thick, can be integrated into textiles and worn like a second skin. These films act as sensors that recognize tactile signals from mom or dad, and as actuators that transmit these movements to the baby. Parents' touch to the fabric activates sensors that react to pressure and deform the ultra-thin film. This ... >>

Petgugu Global cat litter 15.04.2024

Taking care of pets can often be a challenge, especially when it comes to keeping your home clean. A new interesting solution from the Petgugu Global startup has been presented, which will make life easier for cat owners and help them keep their home perfectly clean and tidy. Startup Petgugu Global has unveiled a unique cat toilet that can automatically flush feces, keeping your home clean and fresh. This innovative device is equipped with various smart sensors that monitor your pet's toilet activity and activate to automatically clean after use. The device connects to the sewer system and ensures efficient waste removal without the need for intervention from the owner. Additionally, the toilet has a large flushable storage capacity, making it ideal for multi-cat households. The Petgugu cat litter bowl is designed for use with water-soluble litters and offers a range of additional ... >>

The attractiveness of caring men 14.04.2024

The stereotype that women prefer "bad boys" has long been widespread. However, recent research conducted by British scientists from Monash University offers a new perspective on this issue. They looked at how women responded to men's emotional responsibility and willingness to help others. The study's findings could change our understanding of what makes men attractive to women. A study conducted by scientists from Monash University leads to new findings about men's attractiveness to women. In the experiment, women were shown photographs of men with brief stories about their behavior in various situations, including their reaction to an encounter with a homeless person. Some of the men ignored the homeless man, while others helped him, such as buying him food. A study found that men who showed empathy and kindness were more attractive to women compared to men who showed empathy and kindness. ... >>

Random news from the Archive

Keyboard disinfection 03.02.2011

A prefix to a computer keyboard that kills microbes with ultraviolet light, developed in the UK. The average number of germs on a keyboard is about 500 per square centimeter. So have shown studies conducted in medical institutions in England.

The problem is exacerbated in cases where the computer is used by several people, so that infection can spread. The prefix is ​​installed on the keyboard in such a way that the light of the ultraviolet lamp is directed only to the keys.

The lamp turns on only when there is a break in the work and the hands of the worker are not above the keyboard. In two minutes, 99% of germs are destroyed.

The prefix is ​​in demand in hospitals, clinics, libraries, student classrooms, Internet cafes and wherever a personal computer does not belong to one person.

Other interesting news:

▪ Cooler Thermaltake ToughAir 510

▪ Nanoresonators will make cellular communications better

▪ Robot Experimenter

▪ Electrons flow like a liquid

▪ Virtual shoe fitting

News feed of science and technology, new electronics

 

Interesting materials of the Free Technical Library:

▪ site section Acoustic systems. Article selection

▪ article The essence and nature of manifestations of riots. Basics of safe life

▪ Article What is the difference between management and marketing? Detailed answer

▪ article Serpentine head. Legends, cultivation, methods of application

▪ article Simple metal detector on two transistors. Encyclopedia of radio electronics and electrical engineering

▪ article Electrical installations of residential, public, administrative and domestic buildings. Introductory devices, switchboards, distribution points, group shields. Encyclopedia of radio electronics and electrical engineering

Leave your comment on this article:

Name:


Email (optional):


A comment:





All languages ​​of this page

Home page | Library | Articles | Website map | Site Reviews

www.diagram.com.ua

www.diagram.com.ua
2000-2024