Menu English Ukrainian russian Home

Free technical library for hobbyists and professionals Free technical library


BIOGRAPHIES OF GREAT SCIENTISTS
Free library / Directory / Biographies of great scientists

Gell-Mann Murray. Biography of a scientist

Biographies of great scientists

Directory / Biographies of great scientists

Comments on the article Comments on the article

Gell-Mann Murry
Murray Gell-Mann
(born in 1929).

Murray Gell-Mann was born on September 15, 1929 in New York and was the youngest son of emigrants from Austria Arthur and Pauline (Reichstein) Gell-Mann. At the age of fifteen, Murry entered Yale University. He graduated in 1948 with a Bachelor of Science degree. He spent the following years as a graduate student at the Massachusetts Institute of Technology. Here, in 1951, Gell-Mann received his Ph.D. in physics. After a year's stay at the Princeton Institute for Basic Research (New Jersey), Gell-Mann began working at the University of Chicago with Enrico Fermi, first a lecturer (1952-1953), then an assistant professor (1953-1954) and an adjunct professor (1954-1955). XNUMX).

The main field of scientific interests of the young scientist, elementary particle physics, was in the fifties in the formative stage. The main means of experimental research in this branch of physics were accelerators that "shot" a beam of particles into a stationary target: when the incident particles collide with the target, new particles were born. With the help of accelerators, experimenters managed to obtain several new types of elementary particles, in addition to the already known protons, neutrons and electrons. Theoretical physicists tried to find some scheme that would allow classifying all new particles.

Scientists have discovered particles with unusual (strange) behavior. The rate of birth of such particles as a result of certain collisions indicated that their behavior is determined by the strong interaction, which is characterized by speed. Strong, weak, electromagnetic and gravitational interactions form four fundamental interactions that underlie all phenomena. At the same time, strange particles decayed for an unusually long time, which would be impossible if their behavior were determined by the strong interaction. The decay rate of the strange particles seemed to indicate that this process was determined by a much weaker interaction.

Gell-Mann focused his attention on solving this most difficult task. He chose the concept known as charge independence as the starting point of his constructions. Its essence lies in a certain grouping of particles, emphasizing their similarity. For example, despite the fact that the proton and neutron differ in electrical charge (the proton has a charge of - + 1, the neutron - 0), in all other respects they are identical. Therefore, they can be considered as two varieties of the same type of particles, called nucleons, having an average charge, or center of charge, equal to 1/2. It is customary to say that a proton and a neutron form a doublet. Other particles can also be included in similar doublets or in groups of three particles called triplets, or in "groups" consisting of only one particle, called singlets. The general name for a group consisting of any number of particles is a multiplet.

All attempts to group strange particles in a similar way have failed. Developing his scheme for their grouping, Gell-Mann discovered that the average charge of their multiplets differs from the average charge of nucleons. He came to the conclusion that this difference could be a fundamental property of strange particles and proposed introducing a new quantum property called strangeness. For algebraic reasons, the strangeness of a particle is equal to twice the difference between the average multiplet charge and the average nucleon charge +1/2. Gell-Mann showed that strangeness is conserved in all reactions involving the strong force. In other words, the total strangeness of all particles before the strong interaction must be absolutely equal to the total strangeness of all particles after the interaction.

Strangeness conservation explains why the decay of such particles cannot be determined by the strong interaction. When some other non-strange particles collide, strange particles are produced in pairs. In this case, the strangeness of one particle compensates for the strangeness of the other. For example, if one particle in a pair has strangeness +1, then the strangeness of the other is -1. That is why the total strangeness of non-strange particles, both before and after the collision, is equal to 0. After the birth, strange particles fly apart. An isolated strange particle cannot decay due to the strong interaction if its decay products must be particles with zero strangeness, since such a decay would violate the conservation of strangeness. Gell-Mann showed that the electromagnetic force (whose characteristic time lies between the times of the strong and weak interactions) also retains strangeness. Thus, strange particles, having been born, survive until decay, determined by the weak interaction, which does not preserve strangeness. The scientist published his ideas in 1953.

In 1955, Gell-Mann married J. Margaret Dow, who was an archaeologist. They had a son and a daughter. The scientist's wife died in 1981.

In 1955, Gell-Mann became an adjunct professor on the faculty at Caltech; the next year he is a full professor, and in 1967 he took the honorary professorship established in memory of Robert E. Milliken.

In 1961, Gell-Mann discovered that the system of multiplets he proposed to describe strange particles could be included in a much more general theoretical scheme, which allowed him to group all strongly interacting particles into "families." The scientist called his scheme the eightfold path (by analogy with the eight attributes of a righteous life in Buddhism), since some particles were grouped into families with eight members each. The particle classification scheme he proposed is also known as octal symmetry. Soon, independently of Gell-Mann, the Israeli physicist Yuval Neeman proposed a similar classification of particles.

The American scientist's eightfold path is often compared to Mendeleev's periodic system of chemical elements, in which chemical elements with similar properties are grouped into families. Like Mendeleev, who left some empty cells in the periodic table, predicting the properties of yet unknown elements, Gell-Mann left vacant places in some families of particles, suggesting which particles with the right set of properties should fill the "voids". His theory received partial confirmation in 1964, after the discovery of one of these particles.

In 1963, while a visiting professor at the Massachusetts Institute of Technology, Gell-Mann discovered that the detailed structure of the eightfold path could be explained by assuming that each particle involved in the strong interaction consisted of a triplet of particles with a fractional charge the electric charge of the proton. The same discovery was made by the American physicist George Zweig, who worked at the European Center for Nuclear Research. Gell-Mann called fractionally charged particles quarks, borrowing the word from James Joyce's Finnegans Wake ("Three quarks for Mr. Mark!"). Quarks can have a charge of +2/3 or -1/3. There are also antiquarks with charges of -2/3 or +1/3. A neutron with no electric charge consists of one quark with a charge of +2/3 and two quarks with a charge of -1/3. A proton with a charge of +1 consists of two quarks with charges of +2/3 and one quark with a charge of -1/3. Quarks with the same charge may differ in other properties, i.e., there are several types of quarks with the same charge. Various combinations of quarks make it possible to describe all strongly interacting particles.

In 1969, the scientist was awarded the Nobel Prize in Physics "for discoveries related to the classification of elementary particles and their interactions." Speaking at the awards ceremony, Ivar Waller of the Royal Swedish Academy of Sciences noted that Gell-Mann "has been regarded as a leading scientist in the field of particle theory for more than a decade." According to Waller, the methods proposed by him "are among the most powerful means of further research in elementary particle physics."

Among Gell-Mann's other contributions to theoretical physics, the notion of "currents" of weak interactions proposed by him, together with Richard F. Feynman, and the subsequent development of the "algebra of currents" should be noted.

Gell-Mann loves bird watching, hiking. Another of his hobbies is to visit places untouched by civilization. In 1969, the scientist helped organize an environmental research program funded by the US National Academy of Sciences. He is also interested in historical linguistics.

Gell-Mann is a Fellow of the American Academy of Arts and Sciences and a Foreign Fellow of the Royal Society of London. For his services to science, he was awarded the Danny Heineman Prize of the American Physical Society (1959), the Ernest Orlando Lawrence Physics Prize of the United States Atomic Energy Commission (1966), the Franklin Medal of the Franklin Institute (1967), and the John J. Carty Medal of the US National Academy of Sciences. (1968).

Author: Samin D.K.

 We recommend interesting articles Section Biographies of great scientists:

▪ Dalton John. Biography

▪ Mendeleev Dmitry. Biography

▪ Einstein Albert. Biography

See other articles Section Biographies of great scientists.

Read and write useful comments on this article.

<< Back

Latest news of science and technology, new electronics:

Machine for thinning flowers in gardens 02.05.2024

In modern agriculture, technological progress is developing aimed at increasing the efficiency of plant care processes. The innovative Florix flower thinning machine was presented in Italy, designed to optimize the harvesting stage. This tool is equipped with mobile arms, allowing it to be easily adapted to the needs of the garden. The operator can adjust the speed of the thin wires by controlling them from the tractor cab using a joystick. This approach significantly increases the efficiency of the flower thinning process, providing the possibility of individual adjustment to the specific conditions of the garden, as well as the variety and type of fruit grown in it. After testing the Florix machine for two years on various types of fruit, the results were very encouraging. Farmers such as Filiberto Montanari, who has used a Florix machine for several years, have reported a significant reduction in the time and labor required to thin flowers. ... >>

Advanced Infrared Microscope 02.05.2024

Microscopes play an important role in scientific research, allowing scientists to delve into structures and processes invisible to the eye. However, various microscopy methods have their limitations, and among them was the limitation of resolution when using the infrared range. But the latest achievements of Japanese researchers from the University of Tokyo open up new prospects for studying the microworld. Scientists from the University of Tokyo have unveiled a new microscope that will revolutionize the capabilities of infrared microscopy. This advanced instrument allows you to see the internal structures of living bacteria with amazing clarity on the nanometer scale. Typically, mid-infrared microscopes are limited by low resolution, but the latest development from Japanese researchers overcomes these limitations. According to scientists, the developed microscope allows creating images with a resolution of up to 120 nanometers, which is 30 times higher than the resolution of traditional microscopes. ... >>

Air trap for insects 01.05.2024

Agriculture is one of the key sectors of the economy, and pest control is an integral part of this process. A team of scientists from the Indian Council of Agricultural Research-Central Potato Research Institute (ICAR-CPRI), Shimla, has come up with an innovative solution to this problem - a wind-powered insect air trap. This device addresses the shortcomings of traditional pest control methods by providing real-time insect population data. The trap is powered entirely by wind energy, making it an environmentally friendly solution that requires no power. Its unique design allows monitoring of both harmful and beneficial insects, providing a complete overview of the population in any agricultural area. “By assessing target pests at the right time, we can take necessary measures to control both pests and diseases,” says Kapil ... >>

Random news from the Archive

Kamikaze Drone Mass Launch Complex 25.10.2020

The Chinese Academy of Electronics and Information Technology has developed the Swarm ("Roy") complex, which allows you to simultaneously launch up to 48 unmanned aerial vehicles (UAVs). Drones can perform both reconnaissance and strike functions.

The Chinese Academy of Electronics and Information Technology (CAEIT), a subsidiary of the Chinese state-owned China Electronics Technology Group Corporation, has tested a new complex mounted on a wheeled chassis.

Loitering ammunition with retractable wings, a camera and high-explosive fragmentation warheads are presented - such drones can fly over the territory while the operator is looking for potential targets, and then attack them. There is no information about the drones, but according to the publication, we are talking about the first Chinese tactical drone CH-901.

Such a UAV is capable of flying in the air without landing for up to 2 hours and reaches a maximum speed of up to 160 km/h. Swarm can also be installed on helicopters.

Other interesting news:

▪ Nobel laureates are getting old

▪ Drowsiness is the cause of aggression

▪ Modular Robots ElectroVoxel

▪ Found enzyme will solve the problem of biofuel

▪ Lunar ark for biomaterials

News feed of science and technology, new electronics

 

Interesting materials of the Free Technical Library:

▪ section of the site Winged words, phraseological units. Selection of articles

▪ article Digital video archive for home. video art

▪ article What shape are raindrops? Detailed answer

▪ article Half-track snowmobile GMV-2. Personal transport

▪ article Radio connection of two faxes. Encyclopedia of radio electronics and electrical engineering

▪ article Connecting four joysticks to a video set-top box. Encyclopedia of radio electronics and electrical engineering

Leave your comment on this article:

Name:


Email (optional):


A comment:





All languages ​​of this page

Home page | Library | Articles | Website map | Site Reviews

www.diagram.com.ua

www.diagram.com.ua
2000-2024